Severi type inequalities for irregular surfaces with ample canonical class

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Height inequalities and canonical class inequalities

This lecture is concerned with apriori bounds on the size of solutions to Diophantine equations. We will present a rather random collection of results with the intention to provide a flavor of the subject, with only a glimpse of something like a unifying principle. In the next lecture, we will make a better attempt to give coherence to our exposition, by describing the relation to canonical cla...

متن کامل

Surfaces of Albanese General Type and the Severi Conjecture

In 1932 F. Severi claimed, with an incorrect proof, that every smooth minimal pro-jective surface S such that the bundle Ω 1 S is generically generated by global sections satisfies the topological inequality 2c 2 1 (S) ≥ c2(S). According to Enriques-Kodaira classification, the above inequality is easily verified when the Kodaira dimension of the surface is ≤ 1, while for surfaces of general typ...

متن کامل

On the Poincaré Problem for Foliations with Ample Canonical Series

In this paper we reduce the Poincaré Problem for foliations in P to a problem of postulation of plane curves of degree m − 1, with m denoting the degree of the foliation. An intermediate result gives a solution for Painlevé’s Problem for foliations on a projective surface with ample canonical sheaf.

متن کامل

The Beilinson Complex and Canonical Rings of Irregular Surfaces

An important theorem by Beilinson describes the bounded derived category of coherent sheaves on P, yielding in particular a resolution of every coherent sheaf on P in terms of the vector bundles Ω Pn (j) for 0 ≤ j ≤ n. This theorem is here extended to weighted projective spaces. To this purpose we consider, instead of the usual category of coherent sheaves on P(w) (the weighted projective space...

متن کامل

On Severi varieties on Hirzebruch surfaces

In the current paper we prove that any Severi variety on a Hirzebruch surface contains a unique component parameterizing irreducible nodal curves of the given genus in characteristic zero.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Commentarii Mathematici Helvetici

سال: 2011

ISSN: 0010-2571

DOI: 10.4171/cmh/228